If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z+2z^2-8=0
a = 2; b = 3; c = -8;
Δ = b2-4ac
Δ = 32-4·2·(-8)
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{73}}{2*2}=\frac{-3-\sqrt{73}}{4} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{73}}{2*2}=\frac{-3+\sqrt{73}}{4} $
| 12x-4x=10 | | 1/3(3h+6)=18-12 | | g-9=-7 | | 5+3x+15=2x+6x | | (x+20)+50=90 | | Z^2+9z=3 | | –6−k=–7k | | -22-3(x-9)=-13 | | c/8 =9 | | 1/2x+-5=5 | | 4–4w=-5w | | -5x-13=9x+8 | | 456=x7 | | 4x-2=5-(x-3) | | 6+n/4=10 | | 20+5(w-3)=40 | | -6.3y=8.19 | | 2(5x-2.5)=3(x-2) | | 42x-3=0.5(8.4x+6) | | 2*(b+1)=3*(b-1) | | 1=−4k+5k | | 5-8x=-6+-9x | | 6y+5+4y+7=72 | | 2(n+5)+n=-2 | | -17r-16=20+r | | 2x+11+2x-1+90=180 | | 5+3n=0 | | 7x+5x=2x+10 | | 2x+-4=-5x+89 | | -5(x+2)=-(-5x+1)-1 | | 1/2+2+y=5 | | x+77)=126 |